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0. The purpose of this paper is to briefly report on some

new advances due to'WyD Brownawell[-1-2] on the problem of expli-

cit (concretely computable) solutions to the Bezout equations,

which are based on some recent developments in complex analysis

due toA. Yger and the authors, [6], [91. ..

Let Pl. .... P E C[ZI' "..Zn I= C[Z] be polynomials with

degrees deg(P ); if the Pa's have no common zeros ii C

then the well known Hilbert's Nullstellensatz shows that the so

called Bezout equation

(0.1) P1Q1 + ... mm = M

has a solution = (QI.Qm) with Q. C[Z].

If n = I (i.e., only one complex variable is involved), the

solution .Q can be explicitly obtained with the use of the

euclidean algorithm; even for n > 1, the existence of Q does

not require the full use of the Nullstellensatz, as it can be

derived (not explicitly though) by elimination theory (13]; this

approach, also, enables one to deduce an upper bound on the

degrees of the Qj s in terms of the P,'s which, however, is

quite high for all "practical purposes."

The reason for mentioning "practical purposes" need not be

explained in detail in this volume, and we will be satisfied with

two rather well known examples. The first one arises in the study

of the problem of stabilizability of a strictly causal MIMO (mru]-

tiple input-multiple output) system, in which case, as it is

shown, e.g., in (15], one is directly lead to the study of a

matrix version of (0.1) (in the case of single input and output,
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the scalar version (0.1) suffices). More generally, many problems

connected with the stabilization of MIMO weakly causal systems

lead to similar considerations; we refer the reader to r11] for

more details on this and related subjects. We would only like to

recall here that the matrix valued Bezout equation can !,e reduced

to solving a single equation of the type (0,1) (cf. [61).

A different applied area in which the Bezout equation (0.1)

arises quite naturally is connected with the many probl ms from

the (increasingly important) field of "image reconstruc:ion" (i.r.

In the sequel) techniques. As this was the origin of our first

interest in the subject. let us briefly summarize how i.r. can be

linked to Bezout equations. A naive approach to the i.r. problem

could consist in using a single sensing device (a lens -hich dif-

fracts the signal to determine or anything else which transforms

in an "explicit" way the image we wish to determine), which is

usually mathematically modeled as a convolutor related to a com-

pactly supported distribution (this modeling, of course, depends

on some specific physical assumptions we ask about the sensing

device, like its time-invariancy, its causality, etc.). In other

words, if f is the unknown signal (e.g., represented by a dis-

tribution), and if g is the distribution describing the trans-

formed signal (the one we receive), it is (up to noise)

(0.2) g = Af

with 1 some compactly supported distribution, i.e., if f, g

and A are C functions, p with compact support

(0.3) g(x) f(x-t)A(t)dt,
n
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Rn being the euclidean space (of suitable dimension) in which our

physical problem takes place.

The qUestion, however, of recovering the unknown f from g

Is easily seen to be (generally speaking) an Ill-posed problem

(see, e.g., sec. I of [4]), so that the i.r. problem naturally

leads to a multiple-sensor approach. From a physical point of

view this simply means that we try to reconstruct the Eignal from

the action on it of several (suitably related, in a serse which is

precise and which we will explain in a while) sensors; from a

mathematical point of view, on the other hand, we can ;rovide the

following model: we will assume the unknown signal to be repre-

sented by f s &(Rn) (8 will denote the space of C functions,

with the usual topology of uniform convergence on compact subsets:

topology plays a quite relevant role in this problem!), and we

will represent our sensing devices with compactly supported dis-

tributions j .... 'Am Z V,(n) , which produce the received

signals g1 = #I*f....,gm = Mm f  Clearly, the i.r. problem will

be well posed (and solvable) only when the map

(0.4) f -4(g ..... )

from C to Cm has a continuous inverse (which can be explicitly

produced). The link between the i.r. problem and the Bezout equa-

tion is now given by the following well known result [17>0 [18].

Theorem 0.1. The map (0.4) has a continuous inverse 1ff the

Fourier transform us of the distributions pz (the U. are

entire functions on Cn of exponential type and of polynomial

n n
growth on R C. Cn) satisfy the following condition: 3 A > 0

4
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such that

A(0.5) I()+ ... +? (zL A(1+i-1) exp(AlIm z;), V z c

condition (0.5), in turn, is equivalent to the existence of dis-

tributions vi ,...Vm , ,(n such that

(0.6) I*v1 + ' + V *v  =

(b the Dirac delta) or (equivalently) to the existence of

Q. ."'".'Qm - (, n)) such that

(0.7) + " " + ' =

In this case the i.r. problem is solved with the c,)nstruction

of the inverse of (0.4), i.e., by

(0.8) (g1, .. )...)--4f = v1 *gI + ... + vm*gm*

Thus, at least in the case in which the sensors haore punctual

supports, the solution to the Bezout equation immediately provides

the solution to a particular i.r. problem.

Notice that condition (0.5) can be, quite often, translated

into physical conditions on the sensing devices; consider, for

example, the case n = m = 2, e.g., two sensing devices in the

plane, which were taken to be the diffraction in two circular

lenses of radiuses RI and R2  (the details are discussed in

[8]); in this case it can be shown that, in order for (0.5) to

hold, it is sufficient the existence of a positive constant C

such that

I R C

2'

where p,q(oO) describe the set of zeros of the first Bessel
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function J (which in this problem arises as a part of the

's) .

These motivations are probably sufficient to justify the

great interest which, in these last few years, has developed

around the construction of explicit solutions to (0.1). Note

however, that in this paper we are concerned with a veri simple

Bezout equation, in which only polynomials are concernel, so that,

in this case, Theorem 0.1 is essentially superfluous, a; (0.5)

reduces to the condition that the Pi's have no common zeros, and

so it does not yield any more information than the Null;tellensatz.

Still, Theorem 0.1 is worth looking at, since it cn be used

towards the goal of explicitly constructing the Qj's. Indeed,

Theorem 0.1 (an important breakthrough in complex analysis, at the

time, due to the power of the new tool of the L 2-estimates for

the c-operator) is only an existence theorem which provides no

clues with regard to the construction of the v 's (or, equiva-

lently, to the construction of the Qj's), as it is based on the

purely existential techniques of L 2-estimates; in Hormander's

arguments, the Qj's are "constructed" in a quite natural way:

one first constructs a Cm-solution to (0.7), which is then "cor-

rected" into a holomorphic one, with growth control, via the

existence of solutions to the inhomogeneous Cauchy-Riemann

equation du = f (for f a 5-closed (0,1)-form). In view of

this procedure, the work of M. Andersson and B. Berndtssori (1] on

explicit solutions to the inhomogeneous Cauchy-Riemann equations

becomes immediately of crucial interest, even though their formu-

las do not satisfy the necessary stability requirements, at least



In the most genera] cnse (we shoii2d mrntor. tht&F. a.i ren:

approach to the representaticn formulas of ['], which a.,cids the

use of the h-techniq% es, has been recently establithed by M.

Andersson and M. Passare [2]). Still, these form.ilas w-r- fairy

well in the case of (0.1), i.e., in the case of the po!nomial

Bezout equation (of which (0.7) is the entire holomorphic versizn),

and in a series of papers by B.A. Taylor, A. Yger and tie authors

[6), r8], (9], special versions and modifications of it have been
LV

applied towards an explicit solution of (0.1) and (0.7): U_

section i we will briefly outline these results.

As a consequence of these (long) considerations, i: has

probably become clear the necessity of providing good bgunds for

the degrees of the Q_'s in %10,1; this, of course. is necessary

to even consider the possibility of Implementing a ,ymbolic calcl-

lation which would effectively produce the Q.'s.

Some algebraic approaches to this question, when (0.1) is

replaced by the more general

(0.9) PCQ1  . . . P PQ = c CC n]

(09 PQ m m

but with strong hypotheses or, the P.'s have b)ee- give-)ir

[14), while, on the other hand. if the P_.'s have ,.o common zeros e

at infinity either (think of the P.'s as homogeneous polynomials

in n), basic results of eliminaticn theory [:9] shcw that the

oQ's can be chosen with

deg',Q9 9 n(D--!)

D = max(deg(p,))V

Unti' the rel-ent results n, Srowinawel, the best one -ruld jo



In the general case was to employ the classical methods of Hermann

[16], and, in particular, D.W. Masser and G. Wustholz (20] proved

that one can solve (0.1) with U

deg(QO) I 2(2D)
2

which, of course, is a terrible bound, being a double exponential. (

Recently, however, Brownawell exploited the explicit solu-

tions to (0.1) described before, to drastically reduce this bound,

as the following theorem [12] shows:

Theorem 0.2. Let P......P C C-] have no common zeros, and let

I m

D = max(deg(Pi/). Ther. (0.1 can be solved with Qj's such that

i J

deg(P ) 3nD

for A = min(m,n).

The purpose of section 2 of this paper will be to outline

this result.

Acknowiedgements. The authors are indebted to W.D. Brownawell for

discussing with them his paper [123.
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1. In this section we describe our explicit integral formula

(formula (2.11) in [6]) which constitutes the analytic part in

Brownawell's argument; actually, this formula is just an explici:

translation of Andersson-Berndtsson's formulas, in the case of

polynomials, in which case the original kernels become quite

manageable. In order to give the flavor of its constru:tion, let

us briefly sketch what happens in the simple case of on variable,

but for entire functions with growth restrictions: tak?, e.g.,

F IF, (:'(R)) , which satisfy (0.5), and let us try to construct

G0 , 2  iii (r" (R)) such that

(1.1) F G0 + F,'G, = 1.

It is well known (7], that, by (0.5), one can interpola:e the

values of I/F, on {z c C : F2 (z) = 0) with a functi.-i H. C"

and the values of 1/F- on z C C : FW(Z) =-0) with H2 C Vt

Then the pair (HI,H 2 ) might well be a candidate for a solution

of (1.1), and one could "reasonably" think to express H ,H, via

a "basis" of functions cf the like

4 - -oF2 ( t ) ,,' (  - L) F ' ( Co

where et is a simple zero of F,.

This idea, however, does meet (generally speaking) with some

difficulties, which make necessary the introduction 'see [91,

section 2) of some extra conditions on (F,F 2) which, however,

are always satisfied in the polynomial case. Without dwelling in

these details we simply state the following result 9] :

Theorem 1.1. Let FI' F satisfy (0.5) and suppose that their

zeros are simple and lie in the region



z 11ir z! - C log(2 + !Re z!)).

Then there exists q such that the series

SG~z) = >1 F2(z)
F,(B)=O sqF1 (8)F 2 (8) (z"8)' z C

)= qF (S)F F(z)F, (jO)= = F ( ) 1( 2z '

F1 (CL)=0 2

are normally convergent in t'(R), then, on C,

I F ZqF (Z)Gl(' + z qF,( )G2(z) + F,(z)F (z)P(z)

with

P(Z) = Res' .

Sketch of the proof. The proof of this result is essentially

based on a suitable application of the Cauchy formula to the

function w(r) = qF,(')F 2 ('), where q has to be chosen large

enough (in a sense that will become clear in the sequel). indeed,

one needs to find a sequence of real numbers rn / +, and a

sequence of Jordan curves [ n r together with positive con-n n

stants A.M > 0, such that

ritI - rn on Fn, length(rn ) = O(rn),

(1.2) n

It F1 2(L) A (1+ I) on II n

(Notice that, for polynomials, condition (1.2) can be easily

satisfied). If then D is the bounded open set whosE boundaryn

is I the Caucy formula gives, for z D and q I M.n

IC



1 f W(Z)-W(V) w(Z)f d4
(1.3) = w( ) (Z- ) -2i W(4)(Z-r)'

from which one then gets the above result.

If we now want to extend Theorem 1.1 to the case of n > 1

(for n = I and m > 2. no real difficulties arise, s~e [(9), we

have to substitute, in (1.3), the Cauchy integral formula with the

so called Koppelmann formula [iO]; this result states tiat. for a

bounded domain D c Cn  with C" boundary, there are ternels .

and P such that for any u e C (D) the following re~resenta-

* tion holds for z E D,

Ft
u(z) - u()K(z, ) u( ) A K(z,4)

n!L27r' , R D ;D
(4 .10 ) - I u ( ClP ( , C)I ,

D
where K and P are differential forms in t of type, respec-

tively, (n,n-1) and (n,n), and their concrete construction is

given in [10]. Instead of describing the general case, which is

rather complicated, as well as beyond our immediate interests, we

will confine ourselves to the explicit description of the situa-

tion for the case of the polynomial Bezout equation.

Our notations will be those from complex differential

calculus, which can be found in [24]. From this point of view, a

function on C n will be regarded as a function in the 2n

variables ...... . n. whose complex differentials are
n J n

defined by

* 11



n n

a
for n ' - the usual operators. If w is a (1,0)-type dif-

N

ferential form, i.e., w = Zwjd J, one defines

j=1

n
i w I aw j p d< i

j=3

and

w w ... w (I times).

If now P1, .... Pm are polynomials in C[z] with no coiimon zeros,

it is well known that there exist &,C > 0, such that, on Cn

(1.5) iP 1I(z)i + ... + IPm(z): i £(1 + Izi) ;

the value of L, which classically [23) is known to be estimated

a priori in terms of the degrees of the P.'s is crucial to what

follows, and we will return to it later on.

We now associate to each Pj a differential form g(j) in

the variables I .... ,n and parameters z, . . . .. n by
-n n

n

g(J) (;,z) = ( ( ; , z ) d 4 k ,

k=1

where
," P

zC + , .. . t(Z ))d.(1.6) gk a 1-Tk n t( ))
U) 0

Thus, the g(j) are differential forms whose coefficients are

polynomials in 2n variables which (1.6) provides in an explicit

fashion. (We remark that since the P. are polynomials, these

12



integrals can be computed explicitly. We just leave them in this

form to simplify the notation.) As the P.'s have no common

zeros, we can define one more differential form

n
Q = Q(9,,z)= ) ')g(J) / 2

j=1

n

where, as customary, IIP(4)II 2 = 2 ,IPj (9)I2  We are no4 going to

j=1

write an integral formula in which a sufficiently hidh exponent N

must be chosen, in order to ensure the convergence of the inte-

grals (as in Theorem 1.1); as it will appear in a seconi, the

value of N depends explicitly on the value of the constant L

which appears in (1.5), and can thus be estimated in terms of the

degrees of the P ',s: a relevant part of Brownawell's work con-

sisted in improving as much as possible this estimate.

mn

Let then P(7)P() = ZPj()).P.(z), .z = (j'zj= and,

J1 j=i

for s = min(m,n+l), set

C (n-l)! S! N!Ck =k! (n-k)!" (s-k)!' (N-n+k) J ' k = 0...sl

With all these notations set, we can finally write the Bezout

equation (0.1);

S-1 14ZN-n+k ePTVT.P(-ZY s-k

)n 2k I 2(27'i n -- +I ll lp ( )!I -m 
C€n k=O0. .. .

(1.7)
(~lo(I~I!2 n-k -k

• ( a log(1+12))n ^A (jQ)

with integration with respect to the variables and .

13



Even though (1.7) might not resemble (0.1) at first sight, it

takes only a moment to realize that each Q. in (0.1) can be found

in (1.7) by simply collecting the terms in which P. appears:J

this provides, henceforth, an explicit solution to (0.1) which,

from a concrete point ot view, is now reduced to the computation

of a finite number of definite integrals over n A few comments

are in order on the practicality of this approach and on its

stability: first one realizes that the computation of the inte-

grals arising in (!.7) can be executed rather efficien:ly since

the choice of N itself assures that the integrands decay rather

quickly as functions on !! , and, more importantly, se have ex-

plicit estimates on this decay, which can enable us to control the

errors; as for a more detailed consideration on the stability and

the applicability of this kind of algorithm, we refer the reader

to (4] and (5], where several concrete examples are discussed.

14



2. This last section is devoted to the brilliant result of

Brownawell who, via the formula (1.7), and with a careful exploi-

tation of elimination techniques in the theory of transcendenta"

numbers (mainly based on the work of Yu.V. Westerenko, [22], and

its references) succeeded in proving Theorem 0.2.

This theorem, actually, turns out to be a corollary of the

proof of a more refined statement for which we will corcentrate in

the sequel.

Let us recall a definition from commutative algebra, [21j:

we say that ...,F e Ciz] form a regular sequence if P, s 0

and, for i = 2.....m, P. is not a zero divisor in Cf[],

(P ..... Pm where (P...... ) denotes the ideal cenerated by

1in (]. The theorem we mentioned before is:
Theoem... Le P,-i,

Theorem 2.1. Let P ...... P e CC-] form a regular sequence and

let D = deg(P) > 0. If the P, s have no common zeros then

there exist Q1 1...Qm in C[z) such that

PIQ. + Q+ PmQ 1 on n

and

deg(P.Q.) 2pnD. .. D + 3mD

with p = min(m,n), D = max(D9).

The key step in the proof of Theorem 2.1 is an interesting

result on a lower bound on the maximum modulus of a regular

sequence with no common zeros, namely:

Theorem 2.2. If P .. . 6 . s . arz r regular sequence with no
Im

common zeros and deg(F.) =D > 0, i then there

exists a constant C > 0. depending only on P,, ... ,P such that
'' m

15
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for all G C n - (0), with ~Il = max(ltil ) 2, it is
i

max!P (5 )l t- C14 1 f,

for N = min(m,n).

We do not wish to spend any time on the complicated proof of

Theorem 2.2 (which, in Brownawell's papez, relies on Nesterenko's

use of the Chow form of homogeneous ideals in .[Z]), for which

we refer the reader to [12]; on the other hand, we wisa to show

how the algebraic result given in Theorem 2.2 can be u3ed to prove

Theorem 2.1 and how this theorem, in turn, can be used to obtain

the bounds of Theorem 0.2. Henceforth, throughout the sequel, we

will assume Theorem 2.2.

Proof of Theorem 2.1. In this proof, we have to explicitly refer

to the constructions of (1.6) and (1.7). Indeed, by construction

deg (g D - I

so that, if we write

n

OQ = aij(4, ,z)dti ^ dJ
i,j=1

we have, for z e C n fixed, and as It II- --*+ o ,

maxaij(. , z)I = O(1jgll2B+2(D-)

where, again, D = max(D;), and B = 1 - (,-l)D,....D . In a

similar way, if we write

n

Ba log(3+ II II 2 . A d; ,

112
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we have, for o! ,

maxib 1 j( , = 0((lCl -2

Hence, Theorem 2.2 shows that the convergence in the integrals cf

(1.7) is guaranteed if, for each k = 0,...,m-1 (notice that the

regularity hypothesis on P ...... Pm implies m 4 n+l, hence s

min(m,n+l) = m), it is

N - n + k > (m-k)B - 2(n-k) + 2k(B+D-1) + 2n.

i.e.,

(2.1) N > (m+k)B + 2kD + n - k.

The worst case of (2.1) occurs for k = m-1, i.e., the conver-

gence of the integrals in (1.7) is implied by

N = (2m-1)B + 2(m-I)D & n - m + 2.

Now, the coefficients of JQ have degree, in z, less than or

equal to D - 1, so that. from Theorem 2.2, we immediately get

that the degree of PQ 1  is bounded, for every i, by

(2.2) N - n + mD = (2m-1)(n-l)D 1 '. ... *D + (3m-2)D - 2m + 3.

Theorem 2.1 now follows immediately: indeed, if it = . this is

obvious, while if I, = n, m = n + 1, so that (2m-1)(n-l) =

2Mn - n - 1 which concludes the proof.

We now sketch how Theorem 0.2 is actually a consequence of

the proof of Theorem 2.2 and, morp precisely, of (2.2).

Proof of Theorem 0.2. The idea of the proof [12) is, reasonably

enough, only algebraic, as it essentially tends to show that,

starting with the Pi s, one can (if the theorem does not hold

17



immediately) produce a regular sequence (Q, .... Qm), with no

common zeros, where each Q. is a C-linear combination of the

P J'S; (2.2) then gives the thesis. To be more precise, Let

i = 1,.....z = min(m,n+l); the induction hypothesis is that either

Theorem 0.2 holds true. or else there are polynomials i.  Qi

which are linear combinations (over C) of Pi.... Pm and which

form a regular sequence. For i = 1, just take Q, tc be any

non-zero P.. Suppose we have now constructed such a sequence

Q1 ... Qi for i < V. .f the 0.'s have no common zeis the

induction step follows from (2.2) in an obvious way. I! the

Q.'s, on the other hand, have common zeros, it is a coisequence

of Lemma 1 of [20] the existence of Qi+li again a lint.ar combi-

nation of Pl,..... m' such that Q,,....Qi+, is still regular.

The conclusion is now a simple matter of applying (2.2).

We now wish to conclude with a remark on the concrete possi-

bilities that formula (2.2) has to be applied, in view also of

Theorem 0.2. Indeed, at least in the case of polynomial Bezout

equations, our methods have an important "opponent" in the alge-

braic method which is due essentially to B. Buchberger (1965), and

which relies on the so called Grobner bases. It would take us too

far afield to describe this method (for which we can refer the

reader to the excellent survey given by Buchberger himself in

[13)), but a couple of wrrds may help to understand the different

nature of this elegant method. Let F be a finite set of polyno-

mials in n the so called "simplificatlon problem mcdulo the

n
ideal generated by F , i.e., the problem of finding unique repre-

sentatives in the residue classes modulo the ideal generated by

18
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